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A Note on Modified Optimal Linear 
Multistep Methods* 

By H. Brunner 

Abstract. Modified optimal linear k-step methods (whose coefficients depend on the 
stepsize and on a parameter L) are used for the numerical integration of systems of nonlinear 
ordinary differential equations. It is shown that, by choosing L suitably (depending es- 
sentially on the growth parameters of the k-step method and on the logarithmic norm of 
the Jacobian of the given system), weak stability does no longer occur, and one of two types 
of stability (called asymptotical relative and asymptotical absolute stability) may be obtained. 

1. Introduction. In [1], the author discussed a class of linear k-step methods 
(R, S) of the form 

(1.1) R(E, hL) Yn = hS(E, hL)Fn, 

where EY,, = Yn+l, xn = nh, h > 0, F. = F(x., Y.), 
k 

(1.2) R(w, hL) = a &,(hL).w' = p(w) + ihL p*(w), 
;'=0 

k 

(1.3) S(w, hL) = #,(hL)w' = (w) + ihL o*(w). 

Here, L is a (nonnegative) parameter to be specified later. The polynomials 
k k 

p(w) = E a, w, v(w) = E (3,w' (a,, 1, real) 
;'=0 ;v-0 

are such that the corresponding linear k-step method (p, v) is stable (in the sense of 
Dahlquist) and has (optimal) order p = k + 2 (see [6, p. 232]). The k-step method 
defined by the polynomials 

(p*, v*) (where p*(w) p'(w).(w - 1), ' = d/dw) 

has orderp* > k + 1 ([1], [6]). 
The linear k-step method (R, S), given by (1.1), is used to generate (for given 

initial values { YO, ... , Yk-1 }) approximations { Yk, ... , YN} to the exact solution 
Y(x) of the initial-value problem 

(1.4) Y'(x) = F(x, Y(x)), Y(O) = YO, 0 < x < a, 

at the points x = Xn = nh, n = k, . , N, Nh = a. Here, Y E R', m > 1. 
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It has been known for some time (see, for example, [3]) that optimal linear k-step 
methods (p, a) as decribed above are subject to weak (or marginal) stability. The 
author has shown in [1] that, for the case m = 1, the modified k-step method (R, S) 
does no longer show weak stability if L is chosen suitably. In [2], these results were 
extended to the case m > 1. The purpose of this note is to simplify the results of [2] 
and to discuss their practical application, especially when the given system (1.4) is 
nonlinear. In this case, one is forced to use, in general, a "variable" L, i.e., L will be 
kept constant over a certain number of integration steps in order to avoid the eval- 
uation of the Jacobian of the system at each step. 

2. Elimination of Weak Stability. Let G(x) be the Jacobian of F(x, Y) in (1.4) 
along the exact solution Y(x). Assume that Y(x) & Ck, [O, a] (where k denotes the 
degree of the characteristic polynomials of the method (R, S), k _ 2). It was shown 
in [2] that under these conditions the discretization error En = Y,, - Y(xn) satisfies the 
asymptotic relation (see also [7, pp. 25-26]) 

E. = EN + E(xn)hk+2 + O(hk+3), 0 < x,, < a, 

h -O 0, nh = xn fixed, L fixed. Here (see [2, Theorem 3.1]), E(x) is the solution of a 
system of linear differential equations involving G(x) and the error constants of the 
methods (p, o-) and (p*, u*) (but not the growth parameters of the method (R, S)). 
We have assumed that the initial errors satisfy Ei = O(hk+2), i = 0, 1, .*. , k - 1. 
The error term E,n is the solution of the homogeneous difference equation for En with 
given initial values Ei, i = 0, 1, * , k - 1, and we have 

k 

(2.1) I IE |I| < r(x., L).| Ail. + O(hk+3), 0 < x,, < a. 

The vectors A i are determined from the initial errors E1, and one has I IA l l = O(hk+ 2). 

The functions r,(x, L) are given by [2] 

(2.2) ri(x, L) = exp(L (cos (P - l)x + f N[XiG(t)] dt), j = 1, *.* , k. 

Here, the quantities Xi are the growth parameters of the method (p, u) and are defined 
by [3] 

(2.3) Xi = (zilz)/zi P'(Zi), j = 1, ,k, 

(with p(z;) = 0, zi = exp(.pi), 0 = (PI < V2 < ... < (k < 27r). The symbol AN denotes 
the logarithmic norm corresponding to a matrix norm N (induced by a given vector 
norm I I I1). Properties of the logarithmic norm may be found in [3, pp. 10-12]. 

Definition 1. The linear k-step method (R, S) is called (asymptotically) absolutely 
stable with respect to the system (1.4), if for j = 2, * , k and for all xn C& [Xk, a], 

(2.4) r i(xn,,L) < I1. 

Definition 2. The linear k-step method (R, S) is called (asymptotically) relatively 
stable with respect to the system (1.4), if for j = 2, - - *, k and for all xn & [Xk, a], 

(2.5) rj(x., L) < rl(xn, L) = rl(Xn). 
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Before stating the easily derived criteria for the choice of the parameter L to achieve 
one of these types of stability, we recall some relevant properties of the growth 
parameters of the (optimal) method (p, a) (see also [3, p. 40]). 

(i) The growth parameters Xi are real, XI = 1. 
(ii) Xi = Xk+2-i,,j = 2, **, k/2, Xk/2 +1 - 1 (with equality if and only if 

k = 2). 
(iii) sign (Xi) = (l)-k j 2, * , k/2 + 1. 

Define the set Jk by 

Jk = {2, 4, *. , k/2 + 11 if k/2 is odd, 

= {3, 5, * , k/2 + 11 if k/2 is even. 

For the following discussion, we shall assume that the spectral abscissa of G(x) is 
negative, i.e., 

co(x) _ max Re wi(G(x)) < 0, 0 < x < a, 
(i) 

where cwi(G(x)) denotes the ith eigenvalue of G(x). 
The following results are now obvious. 
THEOREM 1. The linear k-step method (R, S) is (asymptotically) absolutely stable 

with respect to the system (1.4), if the parameter L satisfies for all xn E [Xk, a] the 
inequality 

2 ~-xi 
IJNH-G(t)] 

dt 
(2.6) L _-* max ? 

Xn jEJk 1 Cos (Pi 

Observe that the set Jk consists, for k < 4, of only one element: Jk = {2} if 
k = 2, Jk = {3} if k = 4. 

THEOREM 2. The linear k-step method (R, S) is (asymptotically) relatively stable 
with respect to the system (1.4), if L satisfies, for all x, EE [Xk, a], the inequality 

Xzn 

2 (.N[XjG(t)] - AN[G(t)]) dt 
(2.7) L > -* max 

Xn jEi2,...,k/2+11 1 - cos pj 

It follows from the assumption co(x) < 0, 0 < x < a, that MN[ -G(x)] > 0, 0 < 
x < a, for any matrix norm N, since 

IN[-G(x)] ? max RewAi(-G(x)) = -min Recoi(G(x)) 
(i) (i) 

>-max Re w,i(G(x)) = -w(x) > 0. 
(i) 

(On the other hand, w(x) < 0 does not imply in general that $N[G(x)] < 0. But it can 
be shown that there exists a matrix norm N such that the corresponding logarithmic 
norm of G(x) is arbitrarily close to the spectral abscissa w(x).) 

If, in (2.7), Xi < 0 and if Nis such that IAN[G(x)] < 0, 0 < x < a, then IAN[Xi G(t)] - 

AN[G(t)] > 0. 
But, in this case, we have also to consider those values of j for which 0 < Xi < 1, 

since 
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AN[R3G(t)] - /.N[G(t)] = (Xi - 1)AN[G(t)] > 0 

(see also the remark in [4, p. 155]). 

3. Practical Application. If F(x, Y) in (1.4) is a nonlinear function of Y, then 
the Jacobian G(x) will not be known. It can be computed approximately, simul- 
taneously with Yn, at the points { (xn, Y): n = 0, 1, * , N}J. We set 

a OF(x, Y)/aY I (zn,Yn) 

The integral in (2.6) (or (2.7)) will therefore have to be replaced by a discrete expression 
of the form 

(3.1) In(h)- h EWt,i'1N[-6i]. 
i=O 

An obvious choice is wn,0 = w_- = 1/2, w, i= 1 (O < i < n). Since (2.6) (or (2.7)), 
with the integral replaced by (3.1), can, in general, no longer be satisfied a priori over 
the entire interval [xk, a], one will be forced to use a variable L. To avoid the evaluation 
of on for each n = k - 1, ... , N - 1, the following procedure may be chosen. 
Consider the intervals {[x,n, x i ,]: i = 0, . . ., 1}, with nO = k - 1, n1+1 = N. The 
approximate Jacobian ;,, will be computed only at the points {(x j, Y j): i =0 ... , l}. 
For n1 < n < n +1, we set, using (2.6), 

2 -_ i__T_____(h (3.2) L = L(i > LI2 . a A TU() ( = O,.., 1), 
Xn jeJb 1 k Cos 

where 

T<It(h) = T(t-1)(h) + h , Wn,IN[GG ] 

and 

T(?)(h) = Int (h), T(i)(h) = T (1 (h), i = I, 1. 

For practical purposes, it is convenient to write (3.2) in the form 

(3.3) L(i)= -2 *max -; T(t)(h) + a M 
(3.3) LI(t ft jJk COS (Pi 

Xn4 iC-Jk cs 
where 6' takes the role of a parameter. 

4. Numerical Illustration. We shall apply the above results to a system of 
moderately stiff nonlinear differential equations suggested by Gear [5, p. 218], namely 

(4.1) Y'(x) = F(x, Y(x)) -B Y(x) + U. W(x), 

where the matrix 

'-1 1 1 1 

U=1 1 -1 1 1 
1 1 -1 1 

U 1 1 1 -1L 
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is unitary, U-' = U, B = U diag(b,, b2, b3, b4)* U (with bi $ 0), 

W(X) = (4(x) , z4X)), Z(x) = (Z(X), * Z4(x)) = U. Y(x). 

The exact solution of (4.1), corresponding to the initial vector 
Y(O) = (-1, -1, -1, 1 )I, 

is given by zi(x) = bi/(I + ci exp(bix)), ci = -(1 + bi), i = 1, * , 4, and by 
using Y(x) = UZ(x). 

The eigenvalues of the Jacobian G(x) of (4.1) along the exact solution are 
Ai(x) = 2zi(x) - b,, with limAc Ai(x) = -Ibi , i = 1, * , 4. System (4.1) was 
solved numerically by the modified Milne-Simpson method, 

Y.+,.(I + hL) - hL. Y. - Yn-, 
(4.2) h 

- [(4 + 5hL)F.+1 + (16 + 8hL)Fn + (4 - hL)Fn-]. 

We chose 
f40t 

b= b2 = -0.1, b3 = 5, b4 = 0.001, 

and (4.2) was applied with a step size h = 0.1. Tables 1 and 2 below contain a selection 
of numerical results. The logarithmic norm used in (2.6) and (3.1) was the one cor- 
responding to the maximum norm. 

TABLE 1. b, = 40, h = 0.1 

11E.11. = max(i) jej,.1 
n Xn I II III 

2 0.2 0.03782660 0.03504106 0.03504106 
(L = 54.0 = const) (L = 47.031) (L = 47.031) 

3 0.3 0.03171098 0.02994904 0.02994904 
(L = 49.395) (L = 49.395) 

99 9.9 0.00020415 0.00021375 0.00023867 
(L = 53.981) (L = 53.419) 

100 10.0 0.00019380 0.00020292 0.00022479 
(L = 53.983) (L = 53.419) 

500 50.0 7.23.10-8 7.12.10-8 7.11.10-8 
(L = 54.095) (L = 53.390) 

Exact solution at x = 50: 

Y(x) = (-0.05986120, 0.04074892, -0.05986120, -0.04074892)T. 

Column I: L = const = - *AN - O] + 40 (using (2.6) with constant Jacobian). 
Column II: /LN[- On] = [- 1], n _ 2 (using (3.3), trapezoidal rule, 56) = 40). 
Column III: ni +1-ni = 10 (using (3.3), trapezoidal rule, 5") - 40). 
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TABLE2. b, = 50,h = 0.1 

11E 11.o = max(i) |ej,.1 
n X" I II III 

2 0.2 0.05167039 0.05795966 0.05743187 
(L= 100.33 = const) (L = 167.33 = const) (L = 158.699) 

3 0.3 0.04597920 0.04870244 0.04841416 
(L = 161.619) 

99 9.9 0.04382924 0.00129796 0.00131064 
(L = 167.284) 

100 10.0 0.04366285 0.00124998 0.00126221 
(L = 167.286) 

500 50.0 0.03869461 9.08 10T8 9.06. 10-8 
(L = 167.426) 

Column I: L = const = 13I-N[- oj + 83.0 (using (2.6) with constant Jacobian). 
Column II: L = const = 3 IN[- GoJ + 150.0 (using (2.6) with constant Jacobian). 
Column III: IA N[Gj = IAN[- G1], n _ 2 (using (3.3), trapezoidal rule, 5") = 

150.0). 

All the computations were performed on the CDC 6400 (single precision) at 
Dalhousie University Computer Centre. 

As a first remark we note that the trace of the approximate negative Jacobian 
- G,, of the system under consideration is equal to the sum of its eigenvalues. Hence, 
the logarithmic norm /N[- Gj needs to be updated only if tr(- O) increases by a 
significant amount over a number of integration steps. This remark becomes relevant 
when solving, for example, a nonlinear system of the form 

y(X) = -1(1 + X)10.(1 -Y1(X)) y2(x), Y1(O) = 3, 
1 0y2X(x)y I(___=_3 

Y'(X) = -11?Y+ *Y1(x) 
2 _ Y2(O) = 1, 

whose exact solution is y1(x) = 1 + 2/(1 + x), y2(x) = 1/(1 + x)10. It is obvious 
that in this case the off-diagonal elements (and thus the logarithmic norm correspond- 
ing to the Ll-norm or the Lw,O-norm) vary rapidly as x increases, whereas its trace 
decreases slowly from 12 to 0 as x -* c. 

Table 2 also shows that the parameter L has to be chosen much larger than 
indicated by the right-hand side of (2.6), confirming the fact that the results of Section 2 
have been derived for the asymptotic case h -O 0. In the following table, we list (for 
the modified Milne-Simpson method (4.2)) the smallest value L for which both roots, 
w1(hL) and w2(hL), of the characteristic equation R(w, hL) + hq. S(w, hL) = 0 lie 
no longer outside the unit circle. The agreement between the results of this table and 
the results in Columns I and II of Table 2 is obvious. 
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qh L w1(hL) w2(hL) 

1.0 4.0 0.36842 - 1.00000 
4.2 0.36852 -0.98734 

2.0 10.0 0.14286 - 1.00000 
10.2 0.14326 -0.99340 

3.0 20.0 0.07692 - 1.00000 
20.2 0.07783 -0.99716 

4.0 40.0 0.07692 - 1.00000 
40.2 0.07719 -0.99905 

5.0 100.0 0.10448 - 1.00000 
100.2 0.10455 -0.99982 

5.5 220.0 0.12292 -1.00000 
6.0 0.14286 - 1.000001 
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